Edit on GitHub

Serving models

For online serving, you can create a server from your model. We will try out FastAPI server. All available server implementations are listed in the nested pages.

Running server

To start up FastAPI server run:

$ mlem serve fastapi --model https://github.com/iterative/example-mlem-get-started/rf
⏳️ Loading model from https://github.com/iterative/example-mlem-get-started/tree/main/models/rf.mlem
Starting fastapi server...
🖇️  Adding route for /predict
🖇️  Adding route for /predict_proba
🖇️  Adding route for /sklearn_predict
🖇️  Adding route for /sklearn_predict_proba
Checkout openapi docs at <>
INFO:     Started server process [22854]
INFO:     Waiting for application startup.
INFO:     Application startup complete.
INFO:     Uvicorn running on (Press CTRL+C to quit)

Servers automatically create endpoints from model methods with payload schemas corresponding to serialized dataset types.

Note, that serving the model requires you to have the correct packages to be installed. You can check out how to create a venv with right packages with MLEM, or how to serve the model in a Docker container.

Making requests

You can open Swagger UI (OpenAPI) at http://localhost:8080/docs to check out OpenAPI spec and query examples.

Each server implementation also has its client implementation counterpart, in the case of FastAPI server it’s HTTPClient. Clients can be used to make requests to servers. Since a server also exposes the model interface description, the client will know what methods are available and handle serialization and deserialization for you. You can use them via CLI:

$ mlem apply-remote http test_x.csv --host="" --port=8080 --json
[1, 0, 2, 1, 1, 0, 1, 2, 1, 1, 2, 0, 0, 0, 0, 1, 2, 1, 1, 2, 0, 2, 0, 2, 2, 2, 2, 2, 0, 0, 0, 0, 1, 0, 0, 2, 1, 0]

or via Python API:

from mlem.api import load
from mlem.runtime.client.base import HTTPClient

client = HTTPClient(host="localhost", port=8080)
res = client.predict(load("test_x.csv"))
$ curl -X 'POST' \
      'http://localhost:8080/predict_proba' \
      -H 'accept: application/json' \
      -H 'Content-Type: application/json' \
      -d '{
      "data": {
        "values": [
            "": 0,
            "sepal length (cm)": 0,
            "sepal width (cm)": 0,
            "petal length (cm)": 0,
            "petal width (cm)": 0

🐛 Found an issue? Let us know! Or fix it:

Edit on GitHub

Have a question? Join our chat, we will help you:

Discord Chat