š DataChain Open-Source Release. Star us on !
Apply a model to data. The result will be saved as a
MLEM Object to output
if provided.
Otherwise, it will be printed to stdout
.
usage: mlem apply [-p <path>] [--rev <commitish>] [-o <path>]
[-m <text>] [--dp <path>] [--dr <commitish>]
[-i] [--it <text>] [-b <integer>] [--json]
[-h]
model data
arguments:
model Path to model object
data Path to data object
Applying a model to data means calling a model's method (e.g. predict
) with
all the data points in the dataset, and returning the output as a MLEM Object.
This command addresses a very common workflow, replacing the need to write a Python script to load models & datasets, apply the datasets on the models, and saving the results.
Models and Data, which represent MLEM objects, can be used directly through command line together to easily run inferences on entire datasets.
-p <path>
, --project <path>
- Path to MLEM project [default: (none)]--rev <commitish>
- Repo revision to use [default: (none)]-o <path>
, --output <path>
- Where to save model outputs-m <text>
, --method <text>
- Which model method is to be applied [default:
predict]--dp <path>
, --data-project <path>
- Project with data--dr <commitish>
, --data-rev <commitish>
- Revision of data-i
, --import
- Try to import data on-the-fly--it <text>
, --import-type <text>
- Specify how to read data file for
import. Available types: ['pandas', 'pickle', 'torch']-b <integer>
, --batch_size <integer>
- Batch size for reading data in
batches--json
- Output as json-h
, --help
- Show this message and exit.Apply a local MLEM model to a local MLEM dataset
$ mlem apply mymodel mydata --method predict --output myprediction
Apply a local MLEM model to a dataset imported from a local data file
$ mlem apply mymodel data.csv --method predict --import --import-type pandas[csv] --output myprediction
Apply a version of a remote model (from HEAD of main
branch) to a version of a
remote dataset (again, HEAD of main
branch)
$ mlem apply rf --project https://github.com/iterative/example-mlem-get-started --rev main
iris.csv --data-project https://github.com/iterative/example-mlem-get-started --data-rev main
--method predict --output myprediction