🚀 DataChain Open-Source Release. Star us on !
Create a .mlem
MLEM Object for a model or
data in any file or directory.
usage: mlem import [-p <path>] [--rev <commitish>]
[--tp <path>] [--copy] [--type <text>] [-h]
uri target
arguments:
uri File to import
target Path to save MLEM object
Use import
on an existing data or model files (or directories) to generate the
necessary .mlem
metafiles for them. This is useful to quickly make existing
data and model files compatible with MLEM, which then can be used in future
operations such as mlem apply
.
This command provides a quick and easy alternative to writing Python code to load those models/datasets into object for subsequent usage in MLEM context.
-p <path>
, --project <path>
- Path to MLEM project [default: (none)]--rev <commitish>
- Repo revision to use [default: (none)]--tp <path>
, --target-project <path>
- Project to save target to [default:
(none)]--copy
/ --no-copy
- Whether to create a copy of file in target location
or just link existing file [default: copy]--type <text>
- Specify how to read file Available types: ['pandas',
'pickle', 'torch'] [default: (auto infer)]-h
, --help
- Show this message and exit.Create a MLEM dataset from a local .csv
file
$ mlem import data/data.csv data/imported_data --type pandas[csv]
...
Create a MLEM model from local .pkl
(pickle) file
$ mlem import data/model.pkl data/imported_model
...
Create a MLEM model from remote .pkl
(pickle) file
$ mlem import models/rf \
--project https://github.com/iterative/example-mlem-get-started \
--rev main \
data/imported_model \
--type pickle
💾 Saving model to data/imported_model.mlem